If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-24=0
a = 1; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·1·(-24)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*1}=\frac{0-4\sqrt{6}}{2} =-\frac{4\sqrt{6}}{2} =-2\sqrt{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*1}=\frac{0+4\sqrt{6}}{2} =\frac{4\sqrt{6}}{2} =2\sqrt{6} $
| -8x+5=4x+17 | | -b-8+9=7-2b | | 74+92+83+98+100+x=88 | | 4x+5=-7x-94 | | 74+92+83+98+x=88 | | 38+-38+-3a=-3a | | 2-6c=-10c+10 | | 5x-3=-59-2x | | -(5+6x)+8=0 | | 5p-10=10-p+10 | | 2(4x+11)+9=19 | | -4.134=-15.9n | | 3t=2t-10 | | 12x^2-18x+665=0 | | -8x-27=5(x+5) | | 4(6x+9)-2=24x+34 | | 2(m)=6m-32 | | X2=16x-64 | | -8p+9=7-10p | | 2w+2(2w+8)=96 | | 3x+8=-2+2x | | -10+8n=9n | | 8(y-3)=-4y+24 | | (7x-16)=180 | | 8f-7=1+9f | | 10-3u=3u+10 | | (7+4i)(-3-4i)=0 | | 3x-24=9(x+2) | | x+62.8+(2x-44.8)=180 | | -8g=-9g-10 | | x(x+1)=66 | | 53x+1,907x-64=49(40+43) |